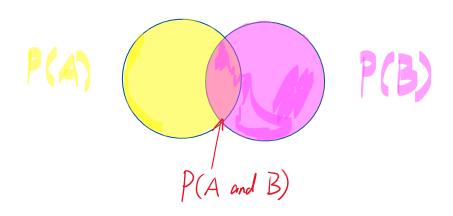
III. Addition — include and from last lecture

The addition rule in probability can be expressed as P(A or B).

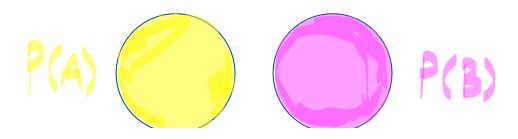
It is the probability that event A occurs or event B occurs, as a single outcome of a procedure.

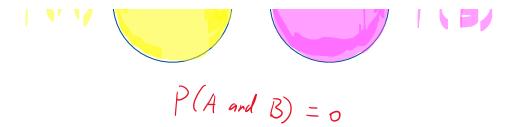
It is any event that compose of 2 or more events.



$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

If event A and event B can <u>not</u> occur at the same time, then it is called <u>disjoint</u> or <u>mutually</u> exclusive.





Contingency Table

	Guards	Forwards	Centers	Total
Varsity Team	3	5	2	10
Jr. Varsity Team	6	8	1	15
Total	9	13	3	(25)

The intersection of Varsity Team row AND the Guards column contains a 3

There are 3 players who are both a Varsity player AND a Guard

The intersection of the Varsity Team row AND the Forward column contains a 5

There are 5 players who are both a Varsity player AND a Forward

The Intersection of the Varsity Team row AND the Centers column contains a

There are 2 players who are both a Varsity player AND a Center

The intersection of the Jr. Varsity Team row AND the Guards column contains a

There are 6 players who are both a Jr. Varsity player AND a Guard

The intersection of the Jr. Varsity Team row AND the Forward column contains a 8

There are 8 players who are both a Jr. Varsity player AND a Forward

The intersection of the Jr. Varsity Team row AND the Centers column contains a

There is 1 player who is both a Jr. Varsity player AND a Center

e	9

	Guards	Forwards	Centers	Total
Varsity Team	3	5	2	10
Jr. Varsity Team	6		1	15
Total	9	13	3	25

The entire row of Jr. Varsity and the entire column of Forward are blue so the answer is Jr. Varsity Team OR Forward but you could also use Forward OR Jr. Varsity Team

Forwards: 5 + 8 = 13 V

Jr. Varsity Team: 6+8+1=15 V

8 has count twice.

60

	Guards	Forwards	Centers	Total
Varsity Team	3	5	2	> 10
Jr. Varsity Team	6	8		15
Total	9	13	3	25

The entire row of Varsity and the entire column of Center are blue so the answer is

Varsity Team OR Center you could also use Center OR Varsity Team

2 has count twice.

$$P(J_r, V_{orsity}) = P(J_r, V_{orsity}) + P(C_{enter}) - P(J_r, V_{orsity})$$

$$= \frac{15}{25} + \frac{3}{25} - \frac{1}{25}$$

$$= \frac{17}{25}$$

			P(Forward (OR Center)	
<u>e</u> g		Guards	Forwards	Centers	Total
	Varsity Team	3	5	2	10
	Jr. Varsity Team	6	8	1	15
	Total	9	13	3	25

$$P(Forward or Center) = P(Forward) + P(Center) - P(Forward and Center)$$

$$= \frac{13}{25} + \frac{3}{25} - \frac{0}{25} \leftarrow \frac{no such}{Player}$$

$$= \frac{16}{25}$$

Egg. Find probability that a randomly selected person is a math major OR a female?

	Math	English	Total
Female	10	20	30
Male	4	67	71
Total	14	87	101 /

Sol: 30+71=101~

$$P(Math \text{ or } Female) = P(Math) + P(Female) - P(Math \text{ and } Female)$$

$$= \frac{14}{101} + \frac{30}{101} - \frac{10}{101}$$

$$= \frac{34}{101} \text{ or } \boxed{0.337}$$

Eg. Given the fast food serving information below:

	McDonald's	Burger King	Wendy's	Taco Bell	
Orders accurate	329	264	249	145	987
Orders not accurate	33	54	31	13	131
	362	3/8	280	158	

a. If one order is selected, find the probability of getting an order that is not accurate.

b. If one order is selected, find the probability of getting an order that is from Wendy's or not

a.
$$P(not\ accurate) = \frac{131}{1118} \approx 0.12$$

b.
$$P(Wendy's \text{ or } not \text{ accurate}) = P(Wendy's) + P(not \text{ accurate}) - P(Wendy's \text{ and})$$

$$= \frac{280}{1118} + \frac{131}{1118} - \frac{31}{1118}$$

$$= \frac{380}{1118}$$

$$\approx 0.34$$

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} \leftarrow \frac{\text{and}}{RHS}$$

Find the following using the table:

a. If 1 of the 555 test subjects is randomly selected, find the probability that the subject had a positive test result, given that the subject actually uses drugs. That is, find *P*(positive test result | subject uses drugs).

Find the following using the table:

a. If 1 of the 555 test subjects is randomly selected, find the probability that the subject had a positive test result, given that the subject actually uses drugs. That is, find P(positive test result | subject uses drugs).

	Positive Test Result (Test shows drug use.)	Negative Test Result (Test shows no drug use.)	
Subject Uses	45	5	
Drugs	(True Positive)	(False Negative)	
Subject Does Not	25	480	S
Use Drugs	(False Positive)	(True Negative)	

555

485

P(positive test result | subject uses drugs)

P(positive test result and subject uses drugs)
P(subject uses drugs)

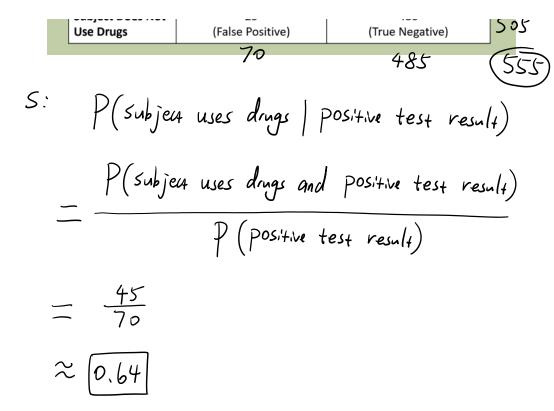
$$\frac{-\frac{45}{50}}{50} \leftarrow \frac{\frac{45}{555}}{\frac{50}{555}} = \frac{45}{555} \cdot \frac{535}{50} = \frac{45}{50}$$

$$=$$
 $\left[0,9\right]$

Find the following using the table:

b. If 1 of the 555 test subjects is randomly selected, find the probability that the subject actually uses drugs, given that he or she had a positive test result. That is, find P(subject uses drugs | positive test result).

			,
	Positive Test Result	Negative Test Result	
	(Test shows drug use.)	(Test shows no drug use.)	
Subject Uses	45	5	50
Drugs	(True Positive)	(False Negative)	
Subject Does Not	25	480	Car
Use Drugs	(False Positive)	(True Negative)	505
	70		
	7.0	486	(E-1-



Eg. The table below shows the number of survey subjects who have received and not received a speeding ticket in the last year, and the color of their car. Find the probability that a randomly chosen person:

- a) Has a speeding ticket given they have a red car
- b) Has a red car given they have a speeding ticket

	Speeding ticket	No speeding	Total
	ticket	ticket	
Red car	15	135	150
Not red car	45	470	515
Total	60 🗸	605	665

$$\frac{15}{150}$$

$$= 0.1$$

Eg. A home pregnancy test was given to women, then pregnancy was verified through blood tests. The following table shows the home pregnancy test results. Find

- a) P(not pregnant | positive test result)
- b) P(positive test result | not pregnant)

	Positive	Negative test	Total
	test		
Pregnant	70	4	74
Not Pregnant	5	14	19
Total	75 🗸	18	93

$$= \frac{5}{75}$$

$$\approx 0.07$$

$$=\frac{5}{19}$$

$$\approx 0.26$$

eg In an experiment, college students were given either four quarters or a \$1 bill and they could either keep the money or spend it on gum. The results are summarized in the table. Find the probability of randomly selecting a student who kept the money, given that the student was given four quarters.

	Purchased Gum	Kept the Money	P
Students Given Four Quarters	34	15	_ → 49
Students Given a \$1 Bill	13	27	

S:
$$P(\text{keep the money} | \text{four quarters})$$

$$= \frac{15}{49}$$

$$\approx 0.31$$