I. Multiplication
The multiplication rule would apply if events A and B are
independent. A and B are independent if the probability of A
occurs is the same, whether or not B will occur.
eg "Prob. tree"
Meal choices Entries
Marin E, (meat)
Meals Alma E2 (Veg)
Jesse E3 (Soup)
P(dinner choice) =
$$\frac{1}{4} \cdot \frac{1}{3}$$

 $= \left[\frac{1}{12}\right]$
 $P(A and B) = P(A) \cdot P(B)$, where A and B
, are independent.
eg transporten: {car, bus, pikty} $\frac{1}{20} \cdot \frac{1}{3} = \frac{1}{60}$

eg The probability of a person is being select for a job interview is 0.2. Then, the probability of acing the interview and would obtain the offer is 0.4. What is the probability of a person is successfully getting the job offer?

S:
Prob. of being select: 0.2
Prob. of getting the job: 0.4
They are independent.

$$P(job offer) = P(being select) \cdot P(acing the interview)$$

 $= 0.2 \cdot 0.4$
 $= 0.08$

eg A marble is drawn from an urn that consists of 2 red marbles and 1 blue marble. After the first drawn, the marble is <u>placed back into the urn</u>. Then the a marble is drawn again. (this is said to drawn "with replacement") Find the probability the first marble is red and the second is blue.

5: $3 \text{ marbles}^{\uparrow}$ $P(\text{red and blue}) = P(\text{red}) \cdot P(\text{blue})$ $= \frac{2}{3} \cdot \frac{1}{3}$ $= \frac{2}{9}$ eg Redo the above example without replacement.

S:

$$P(red and blue) = P(red) \cdot P(blue)$$

$$= \frac{2}{3} \cdot \frac{1}{2} \quad (1 \text{ marble has taken only})$$

$$= \frac{1}{3}$$

eg There are 20 green balls and 15 black balls in a jar. What is the probability that the you draw a green ball first, then draw a black one next?

S:
Total:
$$20 + 15 = 35$$
, independent because they don't
change color
 $P(green and black) = P(green) \cdot P(black)$
 $= \frac{20}{35} \cdot \frac{15}{34} \quad \leftarrow \quad \text{it doesn't say put it back}$
 ≈ 0.25

eg In your drawer you have 10 pairs of socks, 6 of which are white, and 7 tee shirts, 3 of which are white. If you randomly reach in and pull out a pair of socks and a tee shirt. What is the probability that both are white?

S : P(white socks and white tee shirt) "more independent" because it has two dittants = P(white socks) · P(white tee shirt) 6 3

$$= \frac{6}{10} \cdot \frac{3}{7} \quad \text{two different sample space}$$

$$\approx 0.26$$

eg What is the probability that two people born in the same day of the week?

5:

$$7 \text{ days per weak}$$

 $P(1st \text{ day and 2nd day}) = P(1st \text{ day}) \cdot P(2nd \text{ day})$
 $= \frac{1}{7} \cdot \frac{1}{7}$
 $= \left[\frac{1}{49}\right]$

eg Compute the probability of drawing a King from a deck of cards and then drawing a Queen after.

S: Know how cord works
$$\leq \frac{4}{\text{nonface cards}}$$
, face cards
 $P(k \text{ and } Q) = \frac{4}{52} \cdot \frac{4}{51} \leftarrow 1$ has taken out
 ≈ 0.006

eg There are 20 green balls and 15 black balls in a jar. What is the probability that the you draw a green ball and black one? Assuming you draw them at the same time.

$$P(green and black) = P(green) \cdot P(black)$$

$$= \frac{20}{35} \cdot \frac{15}{34}$$

$$\approx 0.25$$

$$* Still has 1st and 2nd, because you feel it$$

5: