I. Probability
$$\leftarrow$$
 chunce that something may happen
 $0 \le p \le 1$
i. Defn
The probability is the calculation of events occur over the
overall proceedure of an experiment.
- simple event is an outcome of a procedure. (your outcome
that you find.)
- sample space is consisting of all possible simple events.
It contains of all outcomes that we can not break down any further.
Notation: A, B and C are events,
 $P_r(A) - the probability of event A.$
 $P_r(B) - \cdots$
 P_r

* Remember: 0.95 is the cutoff for very high probability. 0.05 is the cutoff for very low probability.

Overall,

$$P_r(A) = \frac{\text{num of times occurref}}{\text{total num of times}}$$

 $0 \le P(A) \le 1$
 (0%)

eg What event(s) has a very very low probability?

Ch3a_Mar4 Page

Juin - ier nas a very very low probability? - winning a Jackpot in a lottery. - Snow in August here in Turlock - Commercial airplane accidents

* Now, when can't calculate the probability, but it is a possibility that may happen (it can not be predicted) is called a random variable The process is called the random process. - health issue - weather - earthquake < all of these has probabilities - games winning but they are random variables

eg Procedure Events Sample Space birth 'l girl' 2ⁿ $2' = \{b, g\}$. $2^2 = \{bb, bg, gb, gg\}$ • 2

3

$$2^{3} = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$$

4
 $2^{4} = \{bbbb, \cdots$
 $gggg\}$
 16 of them

eg When two children are born, find the probability of getting the children of the same gender.

S: Sample space = {bb, bg, gb, gg}

$$P_r(same gender) = \frac{bb, gg'}{4}$$

 $= \frac{2}{4}$
 $= \frac{1}{2}$

eg When three children are born, find the probability of getting the children of the same gender.

1

S: Sample space = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}

$$P_r(\text{same gender}) = \frac{bbb, ggg}{8}$$

 $= \frac{2}{8}$
 $= \frac{1}{4} \text{ or } 0.25$

eg When three children are born, find the probability of having exactly one boy.

S: Sample space =
$$\begin{cases} bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg \end{cases}$$

 $P_r(one boy) = \frac{bgg, gbg}{8}, ggb'$
 $= \frac{3}{8}$ or 0.375

eg When three children are born, find the probability of getting <u>at least one girl</u>.

S: Sample space = {bbb, bbg, bgb, bgg, 9bb, 9bg, 9gb, 9gg}
At least one: one or more
$$-14, 24, 34$$

P(at least one girl) = P(one or more girls)
= $\frac{7}{8}$ or 0.875

II. Complement
$$\leftarrow$$
 "the other pair"
The complement of event A, denotes \overline{A} , with $P_r(\overline{A})$ for probability.
The $P_r(\overline{A})$ is the probability of event A that does not occur.
 $P_r(\overline{A}) = 1 - P_r(A)$

eg 1010 U.S. adults were surveyed and 202 of them were smokers.

Let
$$A = smokers$$

Then, $P_r(A) = \frac{202}{1010} = 0.2$ Prob. of smokers
Now, $P(not \ a \ smoker) = P_r(\overline{A})$
 $= 1 - P_r(A)$
 $= 1 - 0.2$
 $= 0.8$

eg When five children are born, find the probability of not getting the children of the same gender.

S:
Sample Space = {bbbbb, bbbbg, ... ggggg}
Let S be the same gender, then

$$Pr(S) = \frac{bbbbb}{32} = \frac{2}{32}$$

 $Pr(\overline{S}) = 1 - P(S)$
 $= 1 - \frac{2}{32}$
 $= \frac{30}{32}$